Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deciphering the brain’s structure-function relationship is key to understanding the neuronal mechanisms underlying perception and cognition. The cortical column, a vertical organization of neurons with similar functions, is a classic example of primate neocortex structure-function organization. While columns have been identified in primary sensory areas using parametric stimuli, their prevalence across higher-level cortex is debated, particularly regarding complex tuning in natural image space. However, a key hurdle in identifying columns is characterizing the complex, nonlinear tuning of neurons to high-dimensional sensory inputs. Building on prior findings of topological organization for features like color and orientation, we investigate functional clustering in macaque visual area V4 in non-parametric natural image space, using large-scale recordings and deep learning–based analysis. We combined linear probe recordings with deep learning methods to systematically characterize the tuning of >1,200 V4 neurons using in silico synthesis of most exciting images (MEIs), followed by in vivo verification. Single V4 neurons exhibited MEIs containing complex features, including textures and shapes, and even high-level attributes with eye-like appearance. Neurons recorded on the same silicon probe, inserted orthogonal to the cortical surface, often exhibited similarities in their spatial feature selectivity, suggesting a degree of functional organization along the cortical depth. We quantified MEI similarity using human psychophysics and distances in a contrastive learning-derived embedding space. Moreover, the selectivity of the V4 neuronal population showed evidence of clustering into functional groups of shared feature selectivity. These functional groups showed parallels with the feature maps of units in artificial vision systems, suggesting potential shared encoding strategies. These results demonstrate the feasibility and scalability of deep learning–based functional characterization of neuronal selectivity in naturalistic visual contexts, offering a framework for quantitatively mapping cortical organization across multiple levels of the visual hierarchy.more » « lessFree, publicly-accessible full text available November 5, 2026
-
Einhäuser, Wolfgang (Ed.)Responses to natural stimuli in area V4—a mid-level area of the visual ventral stream—are well predicted by features from convolutional neural networks (CNNs) trained on image classification. This result has been taken as evidence for the functional role of V4 in object classification. However, we currently do not know if and to what extent V4 plays a role in solving other computational objectives. Here, we investigated normative accounts of V4 (and V1 for comparison) by predicting macaque single-neuron responses to natural images from the representations extracted by 23 CNNs trained on different computer vision tasks including semantic, geometric, 2D, and 3D types of tasks. We found that V4 was best predicted by semantic classification features and exhibited high task selectivity, while the choice of task was less consequential to V1 performance. Consistent with traditional characterizations of V4 function that show its high-dimensional tuning to various 2D and 3D stimulus directions, we found that diverse non-semantic tasks explained aspects of V4 function that are not captured by individual semantic tasks. Nevertheless, jointly considering the features of a pair of semantic classification tasks was sufficient to yield one of our top V4 models, solidifying V4’s main functional role in semantic processing and suggesting that V4’s selectivity to 2D or 3D stimulus properties found by electrophysiologists can result from semantic functional goals.more » « less
An official website of the United States government

Full Text Available